NON-STEADY-STATE CONVECTIVE DIFFUSION IN A
THIN SPHERICAL LAYER
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Non-steady-state convective diffusion in a thin sphericallayer is considered,

This study will consider nonsteady convective diffusion ina thin spherical layer, produced by a time-vary-
ing gravitational field or variable linear acceleration, The spherical layer is formed by a sphere of radius
Ry, located within a sphere of radius Ry ¥ R;. The space between the spheres is filled with an electrolyte,
The outer surface of the inner sphere and inner surface of the outer sphere act as anode and cathode in an
oxidation—reductionreaction, We will assume that the chemical reactionrate atthe electrodes is significantly higher
than the rate at which material arrives at the electrodes, In this case, as the chemical reaction occurs a con-
centration gradient appears in the system, which leads to a solution density gradient [1], As a result, in an
external gravitational field or acceleration field the liquid equilibrium state becomes unstable and convective
motion of the solution develops, which in turn leads to a change in the rate at which reagents reach the elec-
trodes, In the liquid at rest the reactions are limited by diffusion of the reagent from anode to cathode, but
if the liquid is set in motion, then convective transfer occurs together with ionic diffusion, sharply increasing
the reaction rate and limiting current in the circuit,

This process can be described by a system of nonstationary convective diffusion equations, which in the
Boussinesq approximation have the following form [2]:
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The system (1)-(3) must be supplemented by boundary conditions:

(4)

Vig, =0, v =0,
Clr, = 0, ¢l = G (5)
The concentration ¢ in Eq, (5) is specified in preparation of the "working" electrolyte and can vary over wide
limits,
As is well known [2], when rot(cg) = 0, convection occurs at any Grashof number A,' no matter how small,

In this case, a solution of Egs, (1)-(5) can be sought in the form of a series in the small parameter A:

V= vy - A2vy - Ay - e (6)
c=c0 Aoy 4 ANy + - - 7

It should be noted that the method of expansion in a small parameter is obviously inapplicable if rot(cg) = 0,
since in this case the system has a threshold stability Agp, with convection beginning only at A > Aer [2].

The equation for the zeroth approximation to the concentration ¢ corresponds to diffusion in the liquid
at rest, Since in view of the spherical symmetry c° depends solely on the modulus of r, the solution of Eqs,
{8), {5) has the form

0(r) = o 2 _ R (8)
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In the present study we will limit ourselves to determining the linear response of the system to an
external perturbation, which we will specify in the form g(t) = gexp(iwt). Initially, we will find the hydro-
dynamic liquid velocity field produced by this perturbation,

Hydrodynamic Problem, At low frequencies, where w(R,—R;)? « v, the frequency dependence of the
current is determined by the parameter w(R, — R1)2D-1, so that in the Navier —Stokes equation we may confine
ourselves to the linear approximation, Applying the operation rot to Eq, (1) and collecting terms linear in A,
we obtain the equation of the linear approximation for solution velocity

vrot AV = — rot (Bcg). (9)

We will seek a solution of Eq, (9) in the form

v = rot rot (fg), (10)
where f is a scalar function of the modulus r.
Substituting Eq. (10) in (9) and integrating, we obtain
df __ rtlar ~ivr2— ar +_cg£_2___g3_+% 1)

iV 6 36 6 6 r

where the following notation is introduced:

9 RiRy
dc R,— R,

Substituting Eq, (11) in Eq. (10) and defining the integration constants from boundary conditions (4), we
obtain for the solution velocity v the expression
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Here we introduce the dimensionless parameter x = Ry/R, and make the replacement r = r/R,, In the linear

approximation in g, Eq. (12) describes natural convection of the liquid in the spherical layer.

Convective Diffusion Current, The equation of the linear approximation for concentration of the reagent
has the form

Aey——¢, =Dt (vf veb). (13)

The scalar product v » Ve? will be written in the form ¢(r) cos 8, where cos 0=g~(n-g), and in accordance with
Eqgs, (12), (8) ¢(r) is defined by
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We seek a solution of Eq, (13) in the form
cy(r) = p(r)cosO.
For p{r) we obtain the following equation:

d?p 2 dp 2p {® (15)
dr? r o dr r2 D

Below we will consider a thin spherical layer in which Ry — Ry « R;. In this case the first term on the left side
of Eq, (15) is significantly larger than the two following ones, Neglecting the latter terms, we rewrite Eq. (15),
d?p i@

— T P Dl (15)

The general solution of Eq. (16) has the form

r d rs
p(r) = ¢y exp (ur) + a3 exp (—r) +exp(w>j e (—eri)fcp(raexp(urg)drz, | an
Ry R
where
® 1/2 . (18)
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The integration constants c; and ¢, in Eq, (17) are defined from the boundary conditions of Eq, (5).

The change in electrical current AI produced by action of the external acceleration g is determined by
the following expression:

Al = —D { (vem)ds. (19)

Since ¢; ~ cos 4, the result of integrating over the entire sphere surface is equal to zero, This means that the
diffusion flow flowing from one of the hemispheres of an electrode, divided by a plane the normal to which
coincides with the vector g, is exactly equal to the diffusion flow incident on the second hemisphere of the
electrode. To obtain a nonzero result these hemispheres must be separated by an insulating interlayer [3].
Integrating over one hemisphere, we obtain for Al the equation

Al — 2n gva R Y
3 (x—1) exp[x(R, — Ry)] —exp [—x(R,—R))] *

(20)

where

Y = 15 @ () {exp [xR, (x — y)] — exp [eR; (y — x)]} dy.

We will now consider some limiting cases, First we let w —~ 0, and from Eq, (20) we obtain an expres-
sion for the linear response to a static perturbation

B (21)
Al = —5——' gYCOR‘?.
At high frequencies, where ®R; >> 1, the expression for Al has the following form
2
AL = =% giGRID” (R, — R) ™", ®2)
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NOTATION

R,, radius of outer sphere; R,, radius of inner sphere; v, velocity of solution; v, kinematic viscos-
ity; g, acceleration; cj, ion concentration; D, diffusion coefficient; p, solution density; n, unit normal vector;
B =p~top/oc.,
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TEMPERATURE FIELD OF A PLATE WITH INTERNAL
TEMPERATURE-DEPENDENT HEAT SOURCE

N, I, Gamayunov and A, V, Klinger UDC 536.2:517,9

The problem of asymmetric heating of a plate is considered in a medium with variable tempera-
ture in the presence of an internal heat source, the power of which is dependent on temperature
and time,

In many engineering problems related to calculation of heat-transfer processes, it becomes necessary

to analyze the effect on the temperature field of the body under study of internal heat sources, usually those
produced by exothermal chemical reactions, In calculations the power of such heat sources is usually taken
as constant, or its dependence on time and coordinate is specified in the form of certain known functions which
make possible use of existing solutions of the thermal conductivity equation for calculation of the temperature
field [1]., However, in the majority of real processes, the internal heat source power is significantly dependent
on temperature, Thus, in hardening of a number of structural materials, hydration of various cement sub-
stances takes place, accompanied by heat liberation, With increase in temperature the inteasity of the hydration
reaction increases, so that heat liberation also increases, With the passage of time the initial reagent concen-
trations decrease, leading to a slowage of the reaction and heat liberation, A detailed analysis of heat libera-
tion in hardening concrete was performed in [2], The analysis reveals that the temperature —time dependence
of the quantity of heat Qg, liberated upon hardening 1 kg of cement, can be written in the form Qg = £*(7)t, The
power of the internal heat source is proportional to the derivative

Qe _ 0 (1) , | gypy O

w05
With consideration of this fact, the differential equation for heat transfer for the plate has the form

ot ot of (%)
A 2
M

Y
were obtained for a number of special cases, Below a more general solution will be attempted,

where [(t)=—/[*(1} ; M is the quantity of cement in 1 m? of the concrete mixture, In [2] solutions of Eq. (1)

Locating the origin of the coordinate system at the center of the plate, we write the initial boundary con-
ditions of the problem in the form

£(x, 0) = to, (2)

i at o
[(—1) St ait] — autm (), ®

r=X;
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